organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Marilyn M. Olmstead^a* and Javad J. Sahbari^b

^aDepartment of Chemistry, University of California, Davis, CA 95616, USA, and ^b10 Vista Real, Mill Valley, CA 94941, USA

Correspondence e-mail: olmstead@indigo.ucdavis.edu

Key indicators

Single-crystal X-ray study T = 130 K Mean σ (C–C) = 0.003 Å R factor = 0.028 wR factor = 0.078 Data-to-parameter ratio = 9.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Acetylacetone dioxime

The title compound, $C_5H_{10}N_2O_2$, has twofold crystallographic symmetry. A set of four molecules packs around a $\overline{4}$ center to form a 12-membered ring that is constructed from four $O-H\cdots N$ hydrogen bonds.

Received 22 September 2003 Accepted 30 September 2003 Online 7 October 2003

Comment

The central C atom (C3) of acetylacetone dioxime, (I), is situated on a crystallographic twofold axis which gives rise to a HONC(CH₃)CH₂C(CH₃)NOH twisted chain (Fig. 1). This differs from the conformation of glyoxime, which has crystallographic $\overline{1}$ symmetry and is planar with the exception of the oxime H atoms (Jeffrey *et al.*, 1982). Bond distances, angles and torsion angles in (I) are presented in Table 1.

By virtue of the crystallographic $\overline{4}$ axis, one end of each of four molecules is involved in a tetrameric arrangement of O– H···N hydrogen bonding (Fig. 2). The metrical data (Table 2) suggest that this is a moderately strong hydrogen bond. The various possible conformations about the atoms in the dioxime chain give rise to a number of conformational isomers (Chertanova *et al.*, 1994; Jeffrey *et al.*, 1982). The favorable energetics of the tetrameric arrangement is likely a contrib-

Figure 1

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved A view of (I) with the atomic numbering scheme [symmetry code: (A) $y - \frac{1}{2}, \frac{1}{2} + x, \frac{1}{2} - z$]. Displacement ellipsoids are drawn at the 35% probability level.

Figure 2

A view of the tetramer that is formed from packing around the $\overline{4}$ symmetry element. [Symmetry codes: (B) 1 - y, x, -z; (C) 1 - x, 1 - y, z;(BA) y, 1 - x, -z.]

uting factor to the particular conformation that crystallized here (Maurin, 1998).

Experimental

The compound was synthesized as described in the US Patent (Sahbari & Russell, 2001) from acetylacetone and hydroxylamine and recrystallized from perfluorocyclohexane to obtain a crystal suitable for data collection.

Crystal data

$C_5H_{10}N_2O_2$	Cu Kα radi
$M_r = 130.15$	Cell param
Tetragonal, P4n2	reflection
a = 10.852 (2) Å	$\theta = 8.1 - 27.0$
c = 5.9751 (15) Å	$\mu = 0.80 \text{ mm}$
$V = 703.7 (3) \text{ Å}^3$	T = 130(2)
Z = 4	Block, colo
$D_x = 1.229 \text{ Mg m}^{-3}$	0.20×0.20
Data collection	
Syntex P2 ₁ diffractometer	$\theta_{\rm max} = 66.8^\circ$
$2\theta - \omega$ scans	$h = 0 \rightarrow 12$
Absorption correction: none	$k = 0 \rightarrow 12$
777 measured reflections	$l = 0 \rightarrow 7$
598 independent reflections	2 standard
577 reflections with $I > 2\sigma(I)$	every 198
$R_{\rm int} = 0.022$	intensity

iation eters from 48 ns 0 m^{-1} Κ orless \times 0.20 mm

reflections 8 reflections intensity decay: < 0.1%

Refinement	
------------	--

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0428P)^2$
$R[F^2 > 2\sigma(F^2)] = 0.028$	+ 0.1006P]
$wR(F^2) = 0.078$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.12	$(\Delta/\sigma)_{\rm max} = 0.001$
598 reflections	$\Delta \rho_{\rm max} = 0.13 \ {\rm e} \ {\rm \AA}^{-3}$
63 parameters	$\Delta \rho_{\rm min} = -0.11 \text{ e } \text{\AA}^{-3}$
All H-atom parameters refined	Extinction correction: SHELXL97
	Extinction coefficient: 0.025 (3)

Table 1

Selected geometric parameters (Å, °).

O1-N1	1.4007 (16)	C1-C2	1.486 (3)
O1-H1	0.99 (3)	C1-C3	1.5090 (18)
N1-C1	1.281 (2)	C3-H3	0.98 (2)
N1-O1-H1	99.1 (14)	N1-C1-C3	115.81 (13)
C1-N1-O1	112.30 (13)	C2-C1-C3	120.21 (13)
N1-C1-C2	123.95 (13)	$C1 - C3 - C1^{i}$	113.00 (18)
H1-O1-N1-C1	175.6 (14)	N1-C1-C3-C1 ⁱ	119.77 (15)
O1-N1-C1-C2	-1.1(2)	C2-C1-C3-C1 ⁱ	-62.04(13)
O1-N1-C1-C3	177.05 (13)		

Symmetry code: (i) $y - \frac{1}{2}, \frac{1}{2} + x, \frac{1}{2} - z$.

Table 2

|--|

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O1-H1···N1 ⁱⁱ	0.99 (3)	1.78 (3)	2.767 (2)	170 (2)
Symmetry code: (ii)	1 - v - 7			

(i)

Symmetry code: (ii) 1 --y, x, -z

Molecule (I) crystallized in the non-centrosymmetric space group $P\overline{4}n2$, but the absolute configuration was not determined since only light atoms were present and only a unique set of data was collected. H atoms were freely refined.

Data collection: P3-PC (Siemens, 1991); cell refinement: P3-PC; data reduction: XDISK (Siemens, 1991); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1994); software used to prepare material for publication: SHELXL97.

References

- Chertanova, L., Pascard, C. & Sheremetev, A. (1994). Acta Cryst. B50, 708-716.
- Jeffrey, G. A., Ruble, J. R. & Pople, J. A. (1982). Acta Cryst. B38, 1975-1980. Maurin, J. K. (1998). Acta Cryst. B54, 866-871.
- Sahbari, J. J. & Russell, J. W. (2001). US Patent No. 6 235 935 B1.
- Sheldrick, G. M. (1994). SHELXTL. Version 5.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Siemens (1991). P3-PC (Version 4.23) and XDISK. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.