Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Marilyn M. Olmstead ${ }^{\text {a* }}$ and Javad J. Sahbari ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, University of California, Davis, CA 95616, USA, and ${ }^{\mathbf{b}} 10$ Vista Real, Mill Valley, CA 94941, USA

Correspondence e-mail:
olmstead@indigo.ucdavis.edu

Key indicators

Single-crystal X-ray study
$T=130 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.028$
$w R$ factor $=0.078$
Data-to-parameter ratio $=9.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Acetylacetone dioxime

The title compound, $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$, has twofold crystallographic symmetry. A set of four molecules packs around a $\overline{4}$ center to form a 12 -membered ring that is constructed from four O $\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Comment

The central C atom (C3) of acetylacetone dioxime, (I), is situated on a crystallographic twofold axis which gives rise to a $\mathrm{HONC}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{NOH}$ twisted chain (Fig. 1). This differs from the conformation of glyoxime, which has crystallographic $\overline{1}$ symmetry and is planar with the exception of the oxime H atoms (Jeffrey et al., 1982). Bond distances, angles and torsion angles in (I) are presented in Table 1.

By virtue of the crystallographic $\overline{4}$ axis, one end of each of four molecules is involved in a tetrameric arrangement of $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{N}$ hydrogen bonding (Fig. 2). The metrical data (Table 2) suggest that this is a moderately strong hydrogen bond. The various possible conformations about the atoms in the dioxime chain give rise to a number of conformational isomers (Chertanova et al., 1994; Jeffrey et al., 1982). The favorable energetics of the tetrameric arrangement is likely a contrib-

Figure 1
A view of (I) with the atomic numbering scheme [symmetry code: (A) $\left.y-\frac{1}{2}, \frac{1}{2}+x, \frac{1}{2}-z\right]$. Displacement ellipsoids are drawn at the 35% probability level.

Received 22 September 2003
Accepted 30 September 2003 Online 7 October 2003

Figure 2
A view of the tetramer that is formed from packing around the $\overline{4}$ symmetry element. [Symmetry codes: $(B) 1-y, x,-z ;(C) 1-x, 1-y, z$; (BA) $y, 1-x,-z$.]
uting factor to the particular conformation that crystallized here (Maurin, 1998).

Experimental

The compound was synthesized as described in the US Patent (Sahbari \& Russell, 2001) from acetylacetone and hydroxylamine and recrystallized from perfluorocyclohexane to obtain a crystal suitable for data collection.

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=130.15$
Tetragonal, P44n2
$a=10.852(2) \AA \AA$
$c=5.9751(15) \AA$
$V=703.7(3) \AA^{3}$
$Z=4$
$D_{x}=1.229 \mathrm{Mg} \mathrm{m}^{-3}$

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{Cu} K \alpha \text { radiation } \\
\text { Cell parameters from } 48 \\
\text { reflections } \\
\theta=8.1-27.0^{\circ} \\
\mu=0.80 \mathrm{~mm}^{-1} \\
T=130(2) \mathrm{K} \\
\text { Block, colorless } \\
0.20 \times 0.20 \times 0.20 \mathrm{~mm} \\
\\
\\
\theta_{\max }=66.8^{\circ} \\
h=0 \rightarrow 12 \\
k=0 \rightarrow 12 \\
l=0 \rightarrow 7 \\
2 \text { standard reflections } \\
\quad \text { every } 198 \text { reflections } \\
\text { intensity decay: }<0.1 \%
\end{array}
\end{aligned}
$$

Data collection

Syntex $P 2_{1}$ diffractometer
$2 \theta-\omega$ scans
Absorption correction: none
777 measured reflections 598 independent reflections
577 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.022$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0428 P)^{2}\right. \\
&+0.1006 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.13 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.11 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: SHELXL97
Extinction coefficient: 0.025 (3)

Table 1
Selected geometric parameters ($\AA^{\circ},{ }^{\circ}$).

$\mathrm{O} 1-\mathrm{N} 1$	$1.4007(16)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.486(3)$
$\mathrm{O} 1-\mathrm{H} 1$	$0.99(3)$	$\mathrm{C} 1-\mathrm{C} 3$	$1.5090(18)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.281(2)$	$\mathrm{C} 3-\mathrm{H} 3$	$0.98(2)$
$\mathrm{N} 1-\mathrm{O} 1-\mathrm{H} 1$	$99.1(14)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 3$	$115.81(13)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{O} 1$	$112.30(13)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 3$	$120.21(13)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$123.95(13)$	$\mathrm{C} 1-\mathrm{C} 3-\mathrm{C} 1^{\mathrm{i}}$	$113.00(18)$
$\mathrm{H} 1-\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 1$	$175.6(14)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 3-\mathrm{C} 1^{\mathrm{i}}$	$119.77(15)$
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$-1.1(2)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 3-\mathrm{C} 1^{\mathrm{i}}$	$-62.04(13)$
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 3$	$177.05(13)$		
Symmetry code: (i) $y-\frac{1}{2}, \frac{1}{2}+x, \frac{1}{2}-z$.			

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{~N} 1^{\mathrm{ii}}$	$0.99(3)$	$1.78(3)$	$2.767(2)$	$170(2)$

Symmetry code: (ii) $1-y, x,-z$.
Molecule (I) crystallized in the non-centrosymmetric space group $P \overline{4} n 2$, but the absolute configuration was not determined since only light atoms were present and only a unique set of data was collected. H atoms were freely refined.

Data collection: P3-PC (Siemens, 1991); cell refinement: P3-PC; data reduction: XDISK (Siemens, 1991); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1994); software used to prepare material for publication: SHELXL97.

References

Chertanova, L., Pascard, C. \& Sheremetev, A. (1994). Acta Cryst. B50, 708716.

Jeffrey, G. A., Ruble, J. R. \& Pople, J. A. (1982). Acta Cryst. B38, 1975-1980.
Maurin, J. K. (1998). Acta Cryst. B54, 866-871.
Sahbari, J. J. \& Russell, J. W. (2001). US Patent No. 6235935 B1.
Sheldrick, G. M. (1994). SHELXTL. Version 5.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1991). P3-PC (Version 4.23) and XDISK. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

